TY - JOUR
T1 - Mutation screen in the GWAS derived obesity gene SH2B1 including functional analyses of detected variants
AU - Volckmar, Anna Lena
AU - Bolze, Florian
AU - Jarick, Ivonne
AU - Knoll, Nadja
AU - Scherag, André
AU - Reinehr, Thomas
AU - Illig, Thomas
AU - Grallert, Harald
AU - Wichmann, Heinz Erich
AU - Wiegand, Susanna
AU - Biebermann, Heike
AU - Krude, Heiko
AU - Fischer-Posovszky, Pamela
AU - Rief, Winfried
AU - Wabitsch, Martin
AU - Klingenspor, Martin
AU - Hebebrand, Johannes
AU - Hinney, Anke
N1 - Funding Information:
The ascertainment of study groups belonging to different weight extremes was supported by the Deutsche Forschungsgemeinschaft (DFG). All other analyzes were supported by the BMBF (01KU0903; NGFNplus: 01GS0820, 01GS0822, 01GS0830); EU Framework VII (FP7 2007–13 n245009) and the IFORES program of the University of Duisburg-Essen.
PY - 2012
Y1 - 2012
N2 - Background: The SH2B1 gene (Src-homology 2B adaptor protein 1 gene) is a solid candidate gene for obesity. Large scale GWAS studies depicted markers in the vicinity of the gene; animal models suggest a potential relevance for human body weight regulation. Methods. We performed a mutation screen for variants in the SH2B1 coding sequence in 95 extremely obese children and adolescents. Detected variants were genotyped in independent childhood and adult study groups (up to 11,406 obese or overweight individuals and 4,568 controls). Functional implications on STAT3 mediated leptin signalling of the detected variants were analyzed in vitro. Results: We identified two new rare mutations and five known SNPs (rs147094247, rs7498665, rs60604881, rs62037368 and rs62037369) in SH2B1. Mutation g.9483C/T leads to a non-synonymous, non-conservative exchange in the beta (βThr656Ile) and gamma (γPro674Ser) splice variants of SH2B1. It was additionally detected in two of 11,206 (extremely) obese or overweight children, adolescents and adults, but not in 4,506 population-based normal-weight or lean controls. The non-coding mutation g.10182C/A at the 3' end of SH2B1 was only detected in three obese individuals. For the non-synonymous SNP rs7498665 (Thr484Ala) we observed nominal over-transmission of the previously described risk allele in 705 obesity trios (nominal p = 0.009, OR = 1.23) and an increased frequency of the same allele in 359 cases compared to 429 controls (nominal p = 0.042, OR = 1.23). The obesity risk-alleles at Thr484Ala and βThr656Ile/γPro674Ser had no effect on STAT3 mediated leptin receptor signalling in splice variants β and γ. Conclusion: The rare coding mutation βThr656Ile/γPro674Ser (g.9483C/T) in SH2B1 was exclusively detected in overweight or obese individuals. Functional analyzes did not reveal impairments in leptin signalling for the mutated SH2B1.
AB - Background: The SH2B1 gene (Src-homology 2B adaptor protein 1 gene) is a solid candidate gene for obesity. Large scale GWAS studies depicted markers in the vicinity of the gene; animal models suggest a potential relevance for human body weight regulation. Methods. We performed a mutation screen for variants in the SH2B1 coding sequence in 95 extremely obese children and adolescents. Detected variants were genotyped in independent childhood and adult study groups (up to 11,406 obese or overweight individuals and 4,568 controls). Functional implications on STAT3 mediated leptin signalling of the detected variants were analyzed in vitro. Results: We identified two new rare mutations and five known SNPs (rs147094247, rs7498665, rs60604881, rs62037368 and rs62037369) in SH2B1. Mutation g.9483C/T leads to a non-synonymous, non-conservative exchange in the beta (βThr656Ile) and gamma (γPro674Ser) splice variants of SH2B1. It was additionally detected in two of 11,206 (extremely) obese or overweight children, adolescents and adults, but not in 4,506 population-based normal-weight or lean controls. The non-coding mutation g.10182C/A at the 3' end of SH2B1 was only detected in three obese individuals. For the non-synonymous SNP rs7498665 (Thr484Ala) we observed nominal over-transmission of the previously described risk allele in 705 obesity trios (nominal p = 0.009, OR = 1.23) and an increased frequency of the same allele in 359 cases compared to 429 controls (nominal p = 0.042, OR = 1.23). The obesity risk-alleles at Thr484Ala and βThr656Ile/γPro674Ser had no effect on STAT3 mediated leptin receptor signalling in splice variants β and γ. Conclusion: The rare coding mutation βThr656Ile/γPro674Ser (g.9483C/T) in SH2B1 was exclusively detected in overweight or obese individuals. Functional analyzes did not reveal impairments in leptin signalling for the mutated SH2B1.
KW - BMI
KW - Mutation screen
KW - Obesity
KW - SH2B1
KW - rs7498665
UR - http://www.scopus.com/inward/record.url?scp=84871570099&partnerID=8YFLogxK
U2 - 10.1186/1755-8794-5-65
DO - 10.1186/1755-8794-5-65
M3 - Article
C2 - 23270367
AN - SCOPUS:84871570099
SN - 1755-8794
VL - 5
JO - BMC Medical Genomics
JF - BMC Medical Genomics
M1 - 65
ER -