Multiple-vector direct model predictive control for grid-connected power converters with reduced calculation burden

Mohamed Abdelrahem, Faris Hamadto, Anath Garikapati, Ralph Kennel, Jose Rodriguez

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

7 Zitate (Scopus)

Abstract

This paper proposes a multiple-vector direct model predictive control (MV-DMPC) scheme with reduced calculation burden for grid-connected power converters. The proposed control scheme is based on the discrete space vector modulation (DSVM) technique, where the real voltage vectors (VVs) of the converter are employed together with new virtual VVs to improve the steady-state performance of the proposed controller. Furthermore, in order to reduce the calculation burden of the proposed strategy, a deadbeat function is presented to directly compute the reference voltage vector from the demanded reference current/power. Then, the optimal real or virtual voltage vector is selected based on a certain cost function to apply in the next sampling instant. The performance of the proposed method is validated via simulation results and compared with that of the conventional DMPC and the well-known voltage oriented control (VOC) with proportional-integral (PI) controllers.

OriginalspracheEnglisch
TitelProceedings - PRECEDE 2019
Untertitel2019 IEEE International Symposium on Predictive Control of Electrical Drives and Power Electronics
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
ISBN (elektronisch)9781538694145
DOIs
PublikationsstatusVeröffentlicht - Mai 2019
Veranstaltung2019 IEEE International Symposium on Predictive Control of Electrical Drives and Power Electronics, PRECEDE 2019 - Quanzhou, China
Dauer: 31 Mai 20192 Juni 2019

Publikationsreihe

NameProceedings - PRECEDE 2019: 2019 IEEE International Symposium on Predictive Control of Electrical Drives and Power Electronics

Konferenz

Konferenz2019 IEEE International Symposium on Predictive Control of Electrical Drives and Power Electronics, PRECEDE 2019
Land/GebietChina
OrtQuanzhou
Zeitraum31/05/192/06/19

Fingerprint

Untersuchen Sie die Forschungsthemen von „Multiple-vector direct model predictive control for grid-connected power converters with reduced calculation burden“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren