Multiphase dynamic labeling for variational recognition-driven image segmentation

Daniel Cremers, Nir Sochen, Christoph Schnörr

Publikation: Beitrag in Buch/Bericht/KonferenzbandKapitelBegutachtung

22 Zitate (Scopus)

Abstract

We propose a variational framework for the integration multiple competing shape priors into level set based segmentation schemes. By optimizing an appropriate cost functional with respect to both a level set function and a (vector-valued) labeling function, we jointly generate a segmentation (by the level set function) and a recognition-driven partition of the image domain (by the labeling function) which indicates where to enforce certain shape priors. Our framework fundamentally extends previous work on shape priors in level set segmentation by directly addressing the central question of where to apply which prior. It allows for the seamless integration of numerous shape priors such that - while segmenting both multiple known and unknown objects - the level set process may selectively use specific shape knowledge for simultaneously enhancing segmentation and recognizing shape.

OriginalspracheEnglisch
TitelLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Redakteure/-innenTomas Pajdla, Jiri Matas
Herausgeber (Verlag)Springer Verlag
Seiten74-86
Seitenumfang13
ISBN (Print)3540219811
DOIs
PublikationsstatusVeröffentlicht - 2004
Extern publiziertJa

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band3024
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Fingerprint

Untersuchen Sie die Forschungsthemen von „Multiphase dynamic labeling for variational recognition-driven image segmentation“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren