Multimodal integration for meeting group action segmentation and recognition

Marc Al-Hames, Alfred Dielmann, Daniel Gatica-Perez, Stephan Reiter, Steve Renais, Gerhard Rigoll, Pong Zhang

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

9 Zitate (Scopus)

Abstract

We address the problem of segmentation and recognition of sequences of multimodal human interactions in meetings. These interactions can be seen as a rough structure of a meeting, and can be used either as input for a meeting browser or as a first step towards a higher semantic analysis of the meeting. A common lexicon of multimodal group meeting actions, a shared meeting data set, and a common evaluation procedure enable us to compare the different approaches. We compare three different multimodal feature sets and our modelling infrastructures: a higher semantic feature approach, multi-layer HMMs, a multi-stream DBN, as well as a multi-stream mixed-state DBN for disturbed data.

OriginalspracheEnglisch
TitelMachine Learning for Multimodal Interaction - Second International Workshop, MLMI 2005, Revised Selected Papers
Seiten52-63
Seitenumfang12
DOIs
PublikationsstatusVeröffentlicht - 2006
Veranstaltung2nd International Workshop on Machine Learning for Multimodal Interaction, MLMI 2005 - Edinburgh, Großbritannien/Vereinigtes Königreich
Dauer: 11 Juli 200513 Juli 2005

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band3869 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz2nd International Workshop on Machine Learning for Multimodal Interaction, MLMI 2005
Land/GebietGroßbritannien/Vereinigtes Königreich
OrtEdinburgh
Zeitraum11/07/0513/07/05

Fingerprint

Untersuchen Sie die Forschungsthemen von „Multimodal integration for meeting group action segmentation and recognition“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren