Multilayer Graph-Based Trajectory Planning for Race Vehicles in Dynamic Scenarios

Tim Stahl, Alexander Wischnewski, Johannes Betz, Markus Lienkamp

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

61 Zitate (Scopus)

Abstract

Trajectory planning at high velocities and at the handling limits is a challenging task. In order to cope with the requirements of a race scenario, we propose a far-sighted two step, multi-layered graph-based trajectory planner, capable to run with speeds up to 212 km/h. The planner is designed to generate an action set of multiple drivable trajectories, allowing an adjacent behavior planner to pick the most appropriate action for the global state in the scene. This method serves objectives such as race line tracking, following, stopping, overtaking and a velocity profile which enables a handling of the vehicle at the limit of friction. Thereby, it provides a high update rate, a far planning horizon and solutions to non-convex scenarios. The capabilities of the proposed method are demonstrated in simulation and on a real race vehicle.

OriginalspracheEnglisch
Titel2019 IEEE Intelligent Transportation Systems Conference, ITSC 2019
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten3149-3154
Seitenumfang6
ISBN (elektronisch)9781538670248
DOIs
PublikationsstatusVeröffentlicht - Okt. 2019
Veranstaltung2019 IEEE Intelligent Transportation Systems Conference, ITSC 2019 - Auckland, Neuseeland
Dauer: 27 Okt. 201930 Okt. 2019

Publikationsreihe

Name2019 IEEE Intelligent Transportation Systems Conference, ITSC 2019

Konferenz

Konferenz2019 IEEE Intelligent Transportation Systems Conference, ITSC 2019
Land/GebietNeuseeland
OrtAuckland
Zeitraum27/10/1930/10/19

Fingerprint

Untersuchen Sie die Forschungsthemen von „Multilayer Graph-Based Trajectory Planning for Race Vehicles in Dynamic Scenarios“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren