Multiframe blind deconvolution, super-resolution, and saturation correction via incremental EM

Stefan Harmeling, Suvrit Sra, Michael Hirsch, Bernhard Scḧolkopf

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

40 Zitate (Scopus)

Abstract

We formulate the multiframe blind deconvolution problem in an incremental expectation maximization (EM) framework. Beyond deconvolution, we show how to use the same framework to address: (i) super-resolution despite noise and unknown blurring; (ii) saturation-correction of overexposed pixels that confound image restoration. The abundance of data allows us to address both of these without using explicit image or blur priors. The end result is a simple but effective algorithm with no hyperparameters. We apply this algorithm to real-world images from astronomy and to super resolution tasks: for both, our algorithm yields increased resolution and deconvolved images simultaneously.

OriginalspracheEnglisch
Titel2010 IEEE International Conference on Image Processing, ICIP 2010 - Proceedings
Seiten3313-3316
Seitenumfang4
DOIs
PublikationsstatusVeröffentlicht - 2010
Extern publiziertJa
Veranstaltung2010 17th IEEE International Conference on Image Processing, ICIP 2010 - Hong Kong, Hongkong
Dauer: 26 Sept. 201029 Sept. 2010

Publikationsreihe

NameProceedings - International Conference on Image Processing, ICIP
ISSN (Print)1522-4880

Konferenz

Konferenz2010 17th IEEE International Conference on Image Processing, ICIP 2010
Land/GebietHongkong
OrtHong Kong
Zeitraum26/09/1029/09/10

Fingerprint

Untersuchen Sie die Forschungsthemen von „Multiframe blind deconvolution, super-resolution, and saturation correction via incremental EM“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren