Multidimensional unlimited sampling: A geometrical perspective

Vincent Bouis, Felix Krahmer, Ayush Bhandari

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

10 Zitate (Scopus)

Abstract

The recently introduced unlimited sampling theorem proves that a one-dimensional bandlimited function can be perfectly recovered from a constant factor oversampling of its modulo samples. The advantage of this approach is that arbitrary high-dynamic-range signals can be recovered without sensor saturation or clipping. In this paper, we prove a multidimensional version of the unlimited sampling theorem that works with arbitrary sampling lattices. We also present a geometrical perspective on the emerging class of modulo sampling problem that is based on the topology of quotient spaces.

OriginalspracheEnglisch
Titel28th European Signal Processing Conference, EUSIPCO 2020 - Proceedings
Herausgeber (Verlag)European Signal Processing Conference, EUSIPCO
Seiten2314-2318
Seitenumfang5
ISBN (elektronisch)9789082797053
DOIs
PublikationsstatusVeröffentlicht - 24 Jan. 2021
Veranstaltung28th European Signal Processing Conference, EUSIPCO 2020 - Amsterdam, Niederlande
Dauer: 24 Aug. 202028 Aug. 2020

Publikationsreihe

NameEuropean Signal Processing Conference
Band2021-January
ISSN (Print)2219-5491

Konferenz

Konferenz28th European Signal Processing Conference, EUSIPCO 2020
Land/GebietNiederlande
OrtAmsterdam
Zeitraum24/08/2028/08/20

Fingerprint

Untersuchen Sie die Forschungsthemen von „Multidimensional unlimited sampling: A geometrical perspective“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren