MultiDiff: Consistent Novel View Synthesis from a Single Image

Norman Müller, Katja Schwarz, Barbara Rössle, Lorenzo Porzi, Samuel Rota Bulò, Matthias Nießner, Peter Kontschieder

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

2 Zitate (Scopus)

Abstract

We introduce MultiDiff, a novel approach for consistent novel view synthesis of scenes from a single RGB image. The task of synthesizing novel views from a single reference image is highly ill-posed by nature, as there exist multiple, plausible explanations for unobserved areas. To address this issue, we incorporate strong priors in form of monocular depth predictors and video-diffusion models. Monocular depth enables us to condition our model on warped reference images for the target views, increasing geometric stability. The video-diffusion prior provides a strong proxy for 3D scenes, allowing the model to learn continuous and pixel-accurate correspondences across generated images. In contrast to approaches relying on autoregressive image generation that are prone to drifts and error accumulation, MultiDiff Jointly synthesizes a sequence of frames yielding high-quality and multi-view consistent results - even for long-term scene generation with large camera movements, while reducing inference time by an order of magnitude. For additional consistency and image quality improvements, we introduce a novel, structured noise distribution. Our experimental results demonstrate that MultiDiff outperforms state-of-the-art methods on the challenging, real-world datasets RealEstate10K and ScanNet. Finally, our model naturally supports multi-view consistent editing without the need for further tuning.

OriginalspracheEnglisch
TitelProceedings - 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024
Herausgeber (Verlag)IEEE Computer Society
Seiten10258-10268
Seitenumfang11
ISBN (elektronisch)9798350353006
DOIs
PublikationsstatusVeröffentlicht - 2024
Veranstaltung2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024 - Seattle, USA/Vereinigte Staaten
Dauer: 16 Juni 202422 Juni 2024

Publikationsreihe

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (Print)1063-6919

Konferenz

Konferenz2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024
Land/GebietUSA/Vereinigte Staaten
OrtSeattle
Zeitraum16/06/2422/06/24

Fingerprint

Untersuchen Sie die Forschungsthemen von „MultiDiff: Consistent Novel View Synthesis from a Single Image“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren