Multiclass multimodal detection and tracking in urban environments

Luciano Spinello, Rudolph Triebel, Roland Siegwart

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

36 Zitate (Scopus)

Abstract

This paper presents a novel approach to detect and track people and cars based on the combined information retrieved from a camera and a laser range scanner. Laser data points are classified by using boosted Conditional Random Fields, while the image based detector uses an extension of the Implicit Shape Model (ISM), which learns a codebook of local descriptors from a set of hand-labeled images and uses them to vote for centers of detected objects. Our extensions to ISM include the learning of object parts and template masks to obtain more distinctive votes for the particular object classes. The detections from both sensors are then fused and the objects are tracked using a Kalman Filter with multiple motion models. Experiments conducted in real-world urban scenarios demonstrate the effectiveness of our approach.

OriginalspracheEnglisch
Seiten (von - bis)1498-1515
Seitenumfang18
FachzeitschriftInternational Journal of Robotics Research
Jahrgang29
Ausgabenummer12
DOIs
PublikationsstatusVeröffentlicht - Okt. 2010
Extern publiziertJa

Fingerprint

Untersuchen Sie die Forschungsthemen von „Multiclass multimodal detection and tracking in urban environments“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren