Multi-view human activity recognition using motion frequency

Neslihan Kase, Mohammadreza Babaee, Gerhard Rigoll

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

17 Zitate (Scopus)

Abstract

The problem of human activity recognition can be approached using spatio-temporal variations in successive video frames. In this paper, a new human activity recognition technique is proposed using multi-view videos. Initially, a naive background subtraction using frame differencing between adjacent frames of a video is performed. Then, the motion information of each pixel is recorded in binary indicating existence/non-existence of motion in the frame. A pixel wise sum over all the difference images in a view gives the frequency of motion in each pixel throughout the clip. The classification performances are evaluated using these motion frequency features. Our analysis shows that increasing number of views used for feature extraction improves the performance as different views of an activity provide complementary information. Experiments on the i3DPost and the INRIA Xmas Motion Acquisition Sequences (IXMAS) multi-view human action datasets provide significant classification accuracies.

OriginalspracheEnglisch
Titel2017 IEEE International Conference on Image Processing, ICIP 2017 - Proceedings
Herausgeber (Verlag)IEEE Computer Society
Seiten3963-3967
Seitenumfang5
ISBN (elektronisch)9781509021758
DOIs
PublikationsstatusVeröffentlicht - 2 Juli 2017
Veranstaltung24th IEEE International Conference on Image Processing, ICIP 2017 - Beijing, China
Dauer: 17 Sept. 201720 Sept. 2017

Publikationsreihe

NameProceedings - International Conference on Image Processing, ICIP
Band2017-September
ISSN (Print)1522-4880

Konferenz

Konferenz24th IEEE International Conference on Image Processing, ICIP 2017
Land/GebietChina
OrtBeijing
Zeitraum17/09/1720/09/17

Fingerprint

Untersuchen Sie die Forschungsthemen von „Multi-view human activity recognition using motion frequency“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren