Multi-task feature selection on multiple networks via maximum flows

Mahito Sugiyama, Chloé Agathe Azencott, Dominik Grimm, Yoshinobu Kawahara, Karsten M. Borgwardt

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

10 Zitate (Scopus)

Abstract

We propose a new formulation of multi-task feature selection coupled with multiple network regularizers, and show that the problem can be exactly and efficiently solved by maximum flow algorithms. This method contributes to one of the central topics in data mining: How to exploit structural information in multivariate data analysis, which has numerous applications, such as gene regulatory and social network analysis. On simulated data, we show that the proposed method leads to higher accuracy in discovering causal features by solving multiple tasks simultaneously using networks over features. Moreover, we apply the method to multi-locus association mapping with Arabidopsis thaliana genotypes and flowering time phenotypes, and demonstrate its ability to recover more known phenotype-related genes than other state-of-the-art methods.

OriginalspracheEnglisch
TitelSIAM International Conference on Data Mining 2014, SDM 2014
Redakteure/-innenMohammed J. Zaki, Arindam Banerjee, Srinivasan Parthasarathy, Pang Ning-Tan, Zoran Obradovic, Chandrika Kamath
Herausgeber (Verlag)Society for Industrial and Applied Mathematics Publications
Seiten199-207
Seitenumfang9
ISBN (elektronisch)9781510811515
DOIs
PublikationsstatusVeröffentlicht - 2014
Extern publiziertJa
Veranstaltung14th SIAM International Conference on Data Mining, SDM 2014 - Philadelphia, USA/Vereinigte Staaten
Dauer: 24 Apr. 201426 Apr. 2014

Publikationsreihe

NameSIAM International Conference on Data Mining 2014, SDM 2014
Band1

Konferenz

Konferenz14th SIAM International Conference on Data Mining, SDM 2014
Land/GebietUSA/Vereinigte Staaten
OrtPhiladelphia
Zeitraum24/04/1426/04/14

Fingerprint

Untersuchen Sie die Forschungsthemen von „Multi-task feature selection on multiple networks via maximum flows“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren