TY - GEN
T1 - Multi-level surface maps for outdoor terrain mapping and loop closing
AU - Triebel, Rudolph
AU - Pfaff, Patrick
AU - Burgard, Wolfram
PY - 2006
Y1 - 2006
N2 - To operate outdoors or on non-flat surfaces, mobile robots need appropriate data structures that provide a compact representation of the environment and at the same time support important tasks such as path planning and localization. One such representation that has been frequently used in the past are elevation maps which store in each cell of a discrete grid the height of the surface in the corresponding area. Whereas elevation maps provide a compact representation, they lack the ability to represent vertical structures or even multiple levels. In this paper, we propose a new representation denoted as multi-level surface maps (MLS maps). Our approach allows to store multiple surfaces in each cell of the grid. This enables a mobile robot to model environments with structures like bridges, underpasses, buildings or mines. Additionally, they allow to represent vertical structures. Throughout this paper we present algorithms for updating these maps based on sensory input, to match maps calculated from two different scans, and to solve the loop-closing problem given such maps. Experiments carried out with a real robot in an outdoor environment demonstrate that our approach is well-suited for representing large-scale outdoor environments.
AB - To operate outdoors or on non-flat surfaces, mobile robots need appropriate data structures that provide a compact representation of the environment and at the same time support important tasks such as path planning and localization. One such representation that has been frequently used in the past are elevation maps which store in each cell of a discrete grid the height of the surface in the corresponding area. Whereas elevation maps provide a compact representation, they lack the ability to represent vertical structures or even multiple levels. In this paper, we propose a new representation denoted as multi-level surface maps (MLS maps). Our approach allows to store multiple surfaces in each cell of the grid. This enables a mobile robot to model environments with structures like bridges, underpasses, buildings or mines. Additionally, they allow to represent vertical structures. Throughout this paper we present algorithms for updating these maps based on sensory input, to match maps calculated from two different scans, and to solve the loop-closing problem given such maps. Experiments carried out with a real robot in an outdoor environment demonstrate that our approach is well-suited for representing large-scale outdoor environments.
UR - http://www.scopus.com/inward/record.url?scp=34250661010&partnerID=8YFLogxK
U2 - 10.1109/IROS.2006.282632
DO - 10.1109/IROS.2006.282632
M3 - Conference contribution
AN - SCOPUS:34250661010
SN - 142440259X
SN - 9781424402595
T3 - IEEE International Conference on Intelligent Robots and Systems
SP - 2276
EP - 2282
BT - 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2006
T2 - 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2006
Y2 - 9 October 2006 through 15 October 2006
ER -