Multi-disciplinary framework for propeller blade design

A. Kümmel, C. Breitsamter

Publikation: Beitrag in FachzeitschriftKonferenzartikelBegutachtung

4 Zitate (Scopus)

Abstract

Improved propeller designs are necessary to ensure an eco-friendly and resource-saving operation. The shape optimization of propellers involves different disciplines, which include the aerodynamics and the structural characteristics of the propeller. The requirements of the individual disciplines for the propeller design are contradictory and compromises must be made. To deal with this complex optimization task, a modular multi-disciplinary optimization framework is developed. The framework is based on a Python control script, which invokes the individual analysis modules. Within the framework, a blade element momentum theory approach for the aerodynamic analysis and a finite element method for the structural analysis are used. This allows for an efficient calculation of various designs. In a first step, a pure aerodynamic optimization is conducted. In a second step, structural constraints in form of the permissible material stress and the propeller blade tip deflection are considered. The results are compared to a design method, which calculates the blade shape for minimal induced losses.

OriginalspracheEnglisch
Aufsatznummer012060
FachzeitschriftIOP Conference Series: Materials Science and Engineering
Jahrgang1024
Ausgabenummer1
DOIs
PublikationsstatusVeröffentlicht - 22 Jan. 2021
Veranstaltung10th EASN International Conference on Innovation in Aviation and Space to the Satisfaction of the European Citizens, EASN 2020 - Virtual, Online
Dauer: 2 Sept. 20204 Sept. 2020

Fingerprint

Untersuchen Sie die Forschungsthemen von „Multi-disciplinary framework for propeller blade design“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren