Multi-criteria, co-evolutionary charging behavior: An agent-based simulation of urban electromobility

Lennart Adenaw, Markus Lienkamp

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

14 Zitate (Scopus)

Abstract

In order to electrify the transport sector, scores of charging stations are needed to incen-tivize people to buy electric vehicles. In urban areas with a high charging demand and little space, decision-makers are in need of planning tools that enable them to efficiently allocate financial and organizational resources to the promotion of electromobility. As with many other city planning tasks, simulations foster successful decision-making. This article presents a novel agent-based simulation framework for urban electromobility aimed at the analysis of charging station utilization and user behavior. The approach presented here employs a novel co-evolutionary learning model for adaptive charging behavior. The simulation framework is tested and verified by means of a case study conducted in the city of Munich. The case study shows that the presented approach realistically reproduces charging behavior and spatio-temporal charger utilization.

OriginalspracheEnglisch
Aufsatznummer18
Seiten (von - bis)1-26
Seitenumfang26
FachzeitschriftWorld Electric Vehicle Journal
Jahrgang12
Ausgabenummer1
DOIs
PublikationsstatusVeröffentlicht - Jan. 2021

Fingerprint

Untersuchen Sie die Forschungsthemen von „Multi-criteria, co-evolutionary charging behavior: An agent-based simulation of urban electromobility“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren