Multi camera person tracking applying a graph-cuts based foreground segmentation in a homography framework

Dejan Arsić, Atanas Lyutskanov, Gerhard Rigoll, Bogdan Kwolek

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

19 Zitate (Scopus)

Abstract

Reliable tracking of objects is an inevitable prerequisite for automated video surveillance systems. As most object detection methods, which are based on machine learning, require adequate data for the application scenario, foreground segmentation is a popular method to find possible regions of interest. These usually require a specific learning phase and adaptation over time. In this work we will present a novel approach based on graph cuts, which outperforms most standard algorithms. It is commonly agreed that occlusions can only be resolved in multi camera environments. Applying multi layer homography will enable us to robustly detect and track objects applying only foreground data, resulting in a high tracking performance.

OriginalspracheEnglisch
TitelProceedings of the 12th IEEE International Workshop on Performance Evaluation of Tracking and Surveillance, PETS-Winter 2009
DOIs
PublikationsstatusVeröffentlicht - 2009
Veranstaltung12th IEEE International Workshop on Performance Evaluation of Tracking and Surveillance, PETS-Winter 2009 - Snowbird, UT, USA/Vereinigte Staaten
Dauer: 7 Dez. 20099 Dez. 2009

Publikationsreihe

NameProceedings of the 12th IEEE International Workshop on Performance Evaluation of Tracking and Surveillance, PETS-Winter 2009

Konferenz

Konferenz12th IEEE International Workshop on Performance Evaluation of Tracking and Surveillance, PETS-Winter 2009
Land/GebietUSA/Vereinigte Staaten
OrtSnowbird, UT
Zeitraum7/12/099/12/09

Fingerprint

Untersuchen Sie die Forschungsthemen von „Multi camera person tracking applying a graph-cuts based foreground segmentation in a homography framework“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren