MRI-based surgical planning for lumbar spinal stenosis

Gabriele Abbati, Stefan Bauer, Sebastian Winklhofer, Peter J. Schüffler, Ulrike Held, Jakob M. Burgstaller, Johann Steurer, Joachim M. Buhmann

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

The most common reason for spinal surgery in elderly patients is lumbar spinal stenosis (LSS). For LSS, treatment decisions based on clinical and radiological information as well as personal experience of the surgeon show large variance. Thus a standardized support system is of high value for a more objective and reproducible decision. In this work, we develop an automated algorithm to localize the stenosis causing the symptoms of the patient in magnetic resonance imaging (MRI). With 22 MRI features of each of five spinal levels of 321 patients, we show it is possible to predict the location of lesion triggering the symptoms. To support this hypothesis, we conduct an automated analysis of labeled and unlabeled MRI scans extracted from 788 patients. We confirm quantitatively the importance of radiological information and provide an algorithmic pipeline for working with raw MRI scans. Both code and data are provided for further research at www.spinalstenosis.ethz.ch.

OriginalspracheEnglisch
TitelMedical Image Computing and Computer Assisted Intervention − MICCAI 2017 - 20th International Conference, Proceedings
Redakteure/-innenLena Maier-Hein, Alfred Franz, Pierre Jannin, Simon Duchesne, Maxime Descoteaux, D. Louis Collins
Herausgeber (Verlag)Springer Verlag
Seiten116-124
Seitenumfang9
ISBN (Print)9783319661780
DOIs
PublikationsstatusVeröffentlicht - 2017
Extern publiziertJa
Veranstaltung20th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2017 - Quebec City, Kanada
Dauer: 11 Sept. 201713 Sept. 2017

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band10435 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz20th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2017
Land/GebietKanada
OrtQuebec City
Zeitraum11/09/1713/09/17

Fingerprint

Untersuchen Sie die Forschungsthemen von „MRI-based surgical planning for lumbar spinal stenosis“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren