MPMD Framework for Offloading Load Balance Computation

Olga Pearce, Todd Gamblin, Bronis R.De Supinski, Martin Schulz, Nancy M. Amato

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

4 Zitate (Scopus)

Abstract

In many parallel scientific simulations, work is assigned to processors by decomposing a spatial domain consisting of mesh cells, particles, or other elements. When work per element changes, simulations can use dynamic load balance algorithms to distribute work to processors evenly. Typical SPMD simulations wait while a load balance algorithm runs on all processors, but this algorithm can itself become a bottleneck. We propose a novel approach based on two key observations: (1) application state typically changes slowly in SPMD physics simulations, so work assignments computed in the past still produce good load balance in the future, (2) we can decouple the load balance algorithm so that it runs concurrently with the application and more efficiently on a smaller number of processors. We then apply the work assignment "late", once it has been computed. We call this approach lazy load balancing. In this paper, we show that the rate of change in work distribution is slow for a Barnes-Hut benchmark and for ParaDiS, a dislocation dynamics simulation. We implement an MPMD framework to exploit this property to save resources by running a load balancing algorithm at higher parallel efficiency on a smaller number of processors. Using our framework, we explore the trade-offs of lazy load balancing and demonstrate performance improvements of up to 46%.

OriginalspracheEnglisch
TitelProceedings - 2016 IEEE 30th International Parallel and Distributed Processing Symposium, IPDPS 2016
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten943-952
Seitenumfang10
ISBN (elektronisch)9781509021406
DOIs
PublikationsstatusVeröffentlicht - 18 Juli 2016
Extern publiziertJa
Veranstaltung30th IEEE International Parallel and Distributed Processing Symposium, IPDPS 2016 - Chicago, USA/Vereinigte Staaten
Dauer: 23 Mai 201627 Mai 2016

Publikationsreihe

NameProceedings - 2016 IEEE 30th International Parallel and Distributed Processing Symposium, IPDPS 2016

Konferenz

Konferenz30th IEEE International Parallel and Distributed Processing Symposium, IPDPS 2016
Land/GebietUSA/Vereinigte Staaten
OrtChicago
Zeitraum23/05/1627/05/16

Fingerprint

Untersuchen Sie die Forschungsthemen von „MPMD Framework for Offloading Load Balance Computation“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren