Motion2VecSets: 4D Latent Vector Set Diffusion for Non-Rigid Shape Reconstruction and Tracking

Wei Cao, Chang Luo, Biao Zhang, Matthias Nießner, Jiapeng Tang

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

3 Zitate (Scopus)

Abstract

We introduce Motion2VecSets, a 4D diffusion model for dynamic surface reconstruction from point cloud sequences. While existing state-of-the-art methods have demonstrated success in reconstructing non-rigid objects using neural field representations, conventional feed-forward networks encounter challenges with ambiguous observations from noisy, partial, or sparse point clouds. To address these challenges, we introduce a diffusion model that explicitly learns the shape and motion distribution of non-rigid objects through an iterative denoising process of compressed latent representations. The diffusion-based priors enable more plausible and probabilistic reconstructions when handling ambiguous inputs. We parameterize 4D dynamics with latent sets instead of using global latent codes. This novel 4D representation allows us to learn local shape and deformation patterns, leading to more accurate nonlinear motion capture and significantly improving generalizability to unseen motions and identities. For more temporally-coherent object tracking, we synchronously denoise deformation latent sets and exchange information across multiple frames. To avoid computational overhead, we designed an interleaved space and time attention block to alternately aggregate deformation latents along spatial and temporal domains. Extensive comparisons against state-of-the-art methods demonstrate the superiority of our Motion2VecSets in 4D reconstruction from various imperfect observations.

OriginalspracheEnglisch
TitelProceedings - 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024
Herausgeber (Verlag)IEEE Computer Society
Seiten20496-20506
Seitenumfang11
ISBN (elektronisch)9798350353006
DOIs
PublikationsstatusVeröffentlicht - 2024
Veranstaltung2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024 - Seattle, USA/Vereinigte Staaten
Dauer: 16 Juni 202422 Juni 2024

Publikationsreihe

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (Print)1063-6919

Konferenz

Konferenz2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024
Land/GebietUSA/Vereinigte Staaten
OrtSeattle
Zeitraum16/06/2422/06/24

Fingerprint

Untersuchen Sie die Forschungsthemen von „Motion2VecSets: 4D Latent Vector Set Diffusion for Non-Rigid Shape Reconstruction and Tracking“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren