Motion fused frames: Data level fusion strategy for hand gesture recognition

Okan Kopuklu, Neslihan Kose, Gerhard Rigoll

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

96 Zitate (Scopus)

Abstract

Acquiring spatio-temporal states of an action is the most crucial step for action classification. In this paper, we propose a data level fusion strategy, Motion Fused Frames (MFFs), designed to fuse motion information into static images as better representatives of spatio-temporal states of an action. MFFs can be used as input to any deep learning architecture with very little modification on the network. We evaluate MFFs on hand gesture recognition tasks using three video datasets-Jester, ChaLearn LAP IsoGD and NVIDIA Dynamic Hand Gesture Datasets-which require capturing long-term temporal relations of hand movements. Our approach obtains very competitive performance on Jester and ChaLearn benchmarks with the classification accuracies of 96.28% and 57.4%, respectively, while achieving state-of-the-art performance with 84.7% accuracy on NVIDIA benchmark.

OriginalspracheEnglisch
TitelProceedings - 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2018
Herausgeber (Verlag)IEEE Computer Society
Seiten2184-2192
Seitenumfang9
ISBN (elektronisch)9781538661000
DOIs
PublikationsstatusVeröffentlicht - 13 Dez. 2018
Veranstaltung31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2018 - Salt Lake City, USA/Vereinigte Staaten
Dauer: 18 Juni 201822 Juni 2018

Publikationsreihe

NameIEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
Band2018-June
ISSN (Print)2160-7508
ISSN (elektronisch)2160-7516

Konferenz

Konferenz31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2018
Land/GebietUSA/Vereinigte Staaten
OrtSalt Lake City
Zeitraum18/06/1822/06/18

Fingerprint

Untersuchen Sie die Forschungsthemen von „Motion fused frames: Data level fusion strategy for hand gesture recognition“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren