Motion Cooperation: Smooth Piece-wise Rigid Scene Flow from RGB-D Images

Mariano Jaimez, Mohamed Souiai, Jorg Stuckler, Javier Gonzalez-Jimenez, Daniel Cremers

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

29 Zitate (Scopus)

Abstract

We propose a novel joint registration and segmentation approach to estimate scene flow from RGB-D images. Instead of assuming the scene to be composed of a number of independent rigidly-moving parts, we use non-binary labels to capture non-rigid deformations at transitions between the rigid parts of the scene. Thus, the velocity of any point can be computed as a linear combination (interpolation) of the estimated rigid motions, which provides better results than traditional sharp piecewise segmentations. Within a variational framework, the smooth segments of the scene and their corresponding rigid velocities are alternately refined until convergence. A K-means-based segmentation is employed as an initialization, and the number of regions is subsequently adapted during the optimization process to capture any arbitrary number of independently moving objects. We evaluate our approach with both synthetic and real RGB-D images that contain varied and large motions. The experiments show that our method estimates the scene flow more accurately than the most recent works in the field, and at the same time provides a meaningful segmentation of the scene based on 3D motion.

OriginalspracheEnglisch
TitelProceedings - 2015 International Conference on 3D Vision, 3DV 2015
Redakteure/-innenMichael Brown, Jana Kosecka, Christian Theobalt
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten64-72
Seitenumfang9
ISBN (elektronisch)9781467383325
DOIs
PublikationsstatusVeröffentlicht - 20 Nov. 2015
Veranstaltung2015 International Conference on 3D Vision, 3DV 2015 - Lyon, Frankreich
Dauer: 19 Okt. 201522 Okt. 2015

Publikationsreihe

NameProceedings - 2015 International Conference on 3D Vision, 3DV 2015

Konferenz

Konferenz2015 International Conference on 3D Vision, 3DV 2015
Land/GebietFrankreich
OrtLyon
Zeitraum19/10/1522/10/15

Fingerprint

Untersuchen Sie die Forschungsthemen von „Motion Cooperation: Smooth Piece-wise Rigid Scene Flow from RGB-D Images“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren