Moreau–Yosida regularization in shape optimization with geometric constraints

Moritz Keuthen, Michael Ulbrich

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

11 Zitate (Scopus)

Abstract

In the context of shape optimization with geometric constraints we employ the method of mappings (perturbation of identity) to obtain an optimal control problem with a nonlinear state equation on a fixed reference domain. The Lagrange multiplier associated with the geometric shape constraint has a low regularity (similar to state constrained problems), which we circumvent by penalization and a continuation scheme. We employ a Moreau–Yosida-type regularization and assume a second-order condition to hold. The regularized problems can then be solved with a semismooth Newton method and we study the properties of the regularized solutions and the rate of convergence towards a solution of the original problem. A model for the value function in the spirit of Hintermüller and Kunisch (SIAM J Control Optim 45(4): 1198–1221, 2006) is introduced and used in an update strategy for the regularization parameter. The theoretical findings are supported by numerical tests.

OriginalspracheEnglisch
Seiten (von - bis)181-216
Seitenumfang36
FachzeitschriftComputational Optimization and Applications
Jahrgang62
Ausgabenummer1
DOIs
PublikationsstatusVeröffentlicht - 21 Sept. 2015

Fingerprint

Untersuchen Sie die Forschungsthemen von „Moreau–Yosida regularization in shape optimization with geometric constraints“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren