Monte Carlo localization in outdoor terrains using multilevel surface maps

Rainer Kümmerle, Rudolph Triebel, Patrick Pfaff, Wolfram Burgard

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

63 Zitate (Scopus)

Abstract

We propose a novel combination of techniques for robustly estimating the position of a mobile robot in outdoor environments using range data. Our approach applies a particle filter to estimate the full six-dimensional state of the robot and utilizes multilevel surface maps, which, in contrast to standard elevation maps, allow the robot to represent vertical structures and multiple levels in the environment. We describe probabilistic motion and sensor models to calculate the proposal distribution and to evaluate the likelihood of observations. We furthermore describe an active localization approach that actively selects the sensor orientation of the two-dimensional laser range scanner to improve the localization results. To efficiently calculate the appropriate orientation, we apply a clustering operation on the particles and evaluate potential orientations on the basis of these clusters. Experimental results obtained with a mobile robot in large-scale outdoor environments indicate that our approach yields robust and accurate position estimates. The experiments also demonstrate that multilevel surface maps lead to a significantly better localization performance than standard elevation maps. They additionally show that further accuracy is obtained from the active sensing approach.

OriginalspracheEnglisch
Seiten (von - bis)346-359
Seitenumfang14
FachzeitschriftJournal of Field Robotics
Jahrgang25
Ausgabenummer6-7
DOIs
PublikationsstatusVeröffentlicht - Juni 2008
Extern publiziertJa

Fingerprint

Untersuchen Sie die Forschungsthemen von „Monte Carlo localization in outdoor terrains using multilevel surface maps“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren