Molecular Basis of the Electron Bifurcation Mechanism in the [FeFe]-Hydrogenase Complex HydABC

Alexander Katsyv, Anuj Kumar, Patricia Saura, Maximilian C. Pöverlein, Sven A. Freibert, Sven T. Stripp, Surbhi Jain, Ana P. Gamiz-Hernandez, Ville R.I. Kaila, Volker Müller, Jan M. Schuller

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

13 Zitate (Scopus)

Abstract

Electron bifurcation is a fundamental energy coupling mechanism widespread in microorganisms that thrive under anoxic conditions. These organisms employ hydrogen to reduce CO2, but the molecular mechanisms have remained enigmatic. The key enzyme responsible for powering these thermodynamically challenging reactions is the electron-bifurcating [FeFe]-hydrogenase HydABC that reduces low-potential ferredoxins (Fd) by oxidizing hydrogen gas (H2). By combining single-particle cryo-electron microscopy (cryoEM) under catalytic turnover conditions with site-directed mutagenesis experiments, functional studies, infrared spectroscopy, and molecular simulations, we show that HydABC from the acetogenic bacteria Acetobacterium woodii and Thermoanaerobacter kivui employ a single flavin mononucleotide (FMN) cofactor to establish electron transfer pathways to the NAD(P)+ and Fd reduction sites by a mechanism that is fundamentally different from classical flavin-based electron bifurcation enzymes. By modulation of the NAD(P)+ binding affinity via reduction of a nearby iron-sulfur cluster, HydABC switches between the exergonic NAD(P)+ reduction and endergonic Fd reduction modes. Our combined findings suggest that the conformational dynamics establish a redox-driven kinetic gate that prevents the backflow of the electrons from the Fd reduction branch toward the FMN site, providing a basis for understanding general mechanistic principles of electron-bifurcating hydrogenases.

OriginalspracheEnglisch
Seiten (von - bis)5696-5709
Seitenumfang14
FachzeitschriftJournal of the American Chemical Society
Jahrgang145
Ausgabenummer10
DOIs
PublikationsstatusVeröffentlicht - 15 März 2023
Extern publiziertJa

Fingerprint

Untersuchen Sie die Forschungsthemen von „Molecular Basis of the Electron Bifurcation Mechanism in the [FeFe]-Hydrogenase Complex HydABC“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren