TY - JOUR
T1 - Modulable 3D-printed plantibody-laden platform enabling microscale affinity extraction and ratiometric front-face fluorescence detection of microcystin-LR in marine waters
AU - Payà-Pou, Roser
AU - Aguirre-Camacho, Julia
AU - Simó-Alfonso, Ernesto Francisco
AU - Knopp, Dietmar
AU - Miró, Manuel
AU - Carrasco-Correa, Enrique Javier
N1 - Publisher Copyright:
© The Author(s) 2024.
PY - 2024/8
Y1 - 2024/8
N2 - A 3D-printed stereolithographic platform for selective biorecognition is designed to enable convective microscale affinity extraction of microcystin-LR (MC-LR) followed by direct solid-phase optosensing exploiting ratiometric front-face fluorescence spectroscopy. For this purpose, a recombinant monoclonal plantibody (recAb) is covalently attached to a 3D-printed structure for sorptive immunoextraction, whereupon the free and unbound primary amino moieties of the recAb are derivatized with a fluorescent probe. The fluorophore-recAb-MC-LR laden device is then accommodated in the cuvette holder of a conventional fluorometer without any instrumental modification for the recording of the solid-phase fluorescence emission. Using Rodbard’s four-parameter sigmoidal function, the 3D-printed bioselective platform features a limit of detection (LOD) of 28 ng L−1 using a sample volume of 500 mL, device-to-device reproducibility down to 12%, and relative recoveries ranging from 91 to 100% in marine waters. Printed prototypes are affordable, just 0.4 € per print and ≤ 10 € per device containing recAb. One of the main assets of the miniaturized immunoextraction device is that it performs comparably well in terms of analytical figures of merit with costly mass spectrometric-based analytical methodologies, such as HPLC–MS/MS. The device is readily applicable to high-matrix samples, such as seawater, as opposed to previous biosensing platforms, just applied to freshwater systems. Graphical abstract: (Figure presented.)
AB - A 3D-printed stereolithographic platform for selective biorecognition is designed to enable convective microscale affinity extraction of microcystin-LR (MC-LR) followed by direct solid-phase optosensing exploiting ratiometric front-face fluorescence spectroscopy. For this purpose, a recombinant monoclonal plantibody (recAb) is covalently attached to a 3D-printed structure for sorptive immunoextraction, whereupon the free and unbound primary amino moieties of the recAb are derivatized with a fluorescent probe. The fluorophore-recAb-MC-LR laden device is then accommodated in the cuvette holder of a conventional fluorometer without any instrumental modification for the recording of the solid-phase fluorescence emission. Using Rodbard’s four-parameter sigmoidal function, the 3D-printed bioselective platform features a limit of detection (LOD) of 28 ng L−1 using a sample volume of 500 mL, device-to-device reproducibility down to 12%, and relative recoveries ranging from 91 to 100% in marine waters. Printed prototypes are affordable, just 0.4 € per print and ≤ 10 € per device containing recAb. One of the main assets of the miniaturized immunoextraction device is that it performs comparably well in terms of analytical figures of merit with costly mass spectrometric-based analytical methodologies, such as HPLC–MS/MS. The device is readily applicable to high-matrix samples, such as seawater, as opposed to previous biosensing platforms, just applied to freshwater systems. Graphical abstract: (Figure presented.)
KW - 3D printing
KW - Emerging contaminants
KW - Immunoassay
KW - Seawater
UR - http://www.scopus.com/inward/record.url?scp=85199856874&partnerID=8YFLogxK
U2 - 10.1007/s00604-024-06547-2
DO - 10.1007/s00604-024-06547-2
M3 - Article
C2 - 39066900
AN - SCOPUS:85199856874
SN - 0026-3672
VL - 191
JO - Mikrochimica Acta
JF - Mikrochimica Acta
IS - 8
M1 - 490
ER -