Modification of hard-limiting multilayer neural networks for confidence evaluation

Robert Eigenmann, Josef A. Nossek

Publikation: KonferenzbeitragPapierBegutachtung

Abstract

The central theme of this paper is to overcome the inability of feedforward neural networks with hard limiting units to provide confidence evaluation. We consider a Madaline architecture for a 2-group classification problem and concentrate on the probability density function for the neural activation of the first-layer units. As the following layers perform a Boolean table, the expectation value of the output is determined, utilizing the probability of a pattern to perform a definite binary input for the Boolean table. The Madaline architecture can be modified to the introduced Σ-Π-Σ network, which evaluates the expectation value. Several assumptions on the distribution of the neural activation lead to a clear and simple architecture, which is applied to an OCR problem.

OriginalspracheEnglisch
Seiten1087-1091
Seitenumfang5
PublikationsstatusVeröffentlicht - 1997
VeranstaltungProceedings of the 1997 4th International Conference on Document Analysis and Recognition, ICDAR. Part 2 (of 2) - Ulm, Ger
Dauer: 18 Aug. 199720 Aug. 1997

Konferenz

KonferenzProceedings of the 1997 4th International Conference on Document Analysis and Recognition, ICDAR. Part 2 (of 2)
OrtUlm, Ger
Zeitraum18/08/9720/08/97

Fingerprint

Untersuchen Sie die Forschungsthemen von „Modification of hard-limiting multilayer neural networks for confidence evaluation“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren