TY - GEN
T1 - Modelling the sound transmission across junctions of building components by energy influence coefficients
AU - Winter, Christoph
AU - Buchschmid, Martin
AU - Mecking, Simon
AU - Weineisen, Christian
AU - Müller, Gerhard
AU - Schanda, Ulrich
PY - 2014
Y1 - 2014
N2 - A trend towards lightweight structures, e.g. timber structures, is noticeable in civil engineering, which implies the necessity to predict vibroacoustic characteristics like the transmission of structure-borne sound in order to fulfil requirements regarding serviceability. This contribution focuses on the investigation of junctions of building components e.g. between wall and ceiling. It is part of a joint research project with the aim to catalogue the coupling for a variety of junctions. The resulting database may serve to predict the transmission of structure-borne sound which is typically carried out either using a Finite Element (FEM) approach, suitable for the low frequency range, or by means of energy methods like the Statistical Energy Analysis (SEA) for the high frequency range. Therefore the so-called mid frequency gap emerges, which is examined and attempted to be closed. In this context SEA-averaging techniques are applied in the postprocessing of FEM calculations to obtain an adapted "SEAlike" approach. By varying the subsystems to be excited it is possible to determine Energy Influence Coefficients (EIC), which describe the specific energy content of the different subsystems with respect to the input power. Using this hybrid approach vibroacoustic predictions can be performed also in the mid frequency range. Inverting the EIC-matrix Coupling Loss Factors as well as Damping Loss Factors of the different subsystems can be calculated if the subsystem definition fulfils the SEA-requirements. The application of the method in combination to a classical SEA calculation and to laboratory measurements is presented.
AB - A trend towards lightweight structures, e.g. timber structures, is noticeable in civil engineering, which implies the necessity to predict vibroacoustic characteristics like the transmission of structure-borne sound in order to fulfil requirements regarding serviceability. This contribution focuses on the investigation of junctions of building components e.g. between wall and ceiling. It is part of a joint research project with the aim to catalogue the coupling for a variety of junctions. The resulting database may serve to predict the transmission of structure-borne sound which is typically carried out either using a Finite Element (FEM) approach, suitable for the low frequency range, or by means of energy methods like the Statistical Energy Analysis (SEA) for the high frequency range. Therefore the so-called mid frequency gap emerges, which is examined and attempted to be closed. In this context SEA-averaging techniques are applied in the postprocessing of FEM calculations to obtain an adapted "SEAlike" approach. By varying the subsystems to be excited it is possible to determine Energy Influence Coefficients (EIC), which describe the specific energy content of the different subsystems with respect to the input power. Using this hybrid approach vibroacoustic predictions can be performed also in the mid frequency range. Inverting the EIC-matrix Coupling Loss Factors as well as Damping Loss Factors of the different subsystems can be calculated if the subsystem definition fulfils the SEA-requirements. The application of the method in combination to a classical SEA calculation and to laboratory measurements is presented.
KW - Energy flow analysis
KW - Energy influence coefficients
KW - Finite element method
KW - Lightweight timber structures
KW - Power injection method
KW - Prediction of sound transmission
KW - Statistical energy analysis
KW - Vibroacoustics
UR - http://www.scopus.com/inward/record.url?scp=84994477240&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84994477240
T3 - Proceedings of the International Conference on Structural Dynamic , EURODYN
SP - 3265
EP - 3271
BT - Proceedings of the 9th International Conference on Structural Dynamics, EURODYN 2014
A2 - Cunha, A.
A2 - Ribeiro, P.
A2 - Caetano, E.
A2 - Muller, G.
PB - European Association for Structural Dynamics
T2 - 9th International Conference on Structural Dynamics, EURODYN 2014
Y2 - 30 June 2014 through 2 July 2014
ER -