Modelling the monotonic and cyclic behaviour of sands using Artificial Neural Networks

Weixian Chen, Andrés Alfonso Peña Olarte, Roberto Cudmani

Publikation: KonferenzbeitragPapierBegutachtung

Abstract

In this study artificial neural networks (ANN) are used to simulate the monotonic and cyclic behaviour of sands observed in laboratory tests on Karlsruhe sand under drained and undrained conditions. A genetic algorithm (GA) is used to obtain an optimal framework for the ANN. The results show that the proposed genetic adaptive neural network (GANN) can effectively simulate drained and undrained monotonic triaxial behaviour of saturated sand under isotropic or anisotropic consolidation. The GANN is also able to predict satisfactorily the cyclic behaviour of sands under undrained triaxial test with strain and stress cycles. In addition, GANN is able to distinguish between monotonic drained and undrained conditions by delivering a good prediction when trained with the combined database.

OriginalspracheEnglisch
DOIs
PublikationsstatusVeröffentlicht - 7 Juni 2021
Veranstaltung9th International Conference on Micromechanics on Granular Media, Powders and Grains 2021 - Virtual, Online, Argentinien
Dauer: 5 Juli 20216 Aug. 2021

Konferenz

Konferenz9th International Conference on Micromechanics on Granular Media, Powders and Grains 2021
Land/GebietArgentinien
OrtVirtual, Online
Zeitraum5/07/216/08/21

Fingerprint

Untersuchen Sie die Forschungsthemen von „Modelling the monotonic and cyclic behaviour of sands using Artificial Neural Networks“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren