Modeling of stochastic biological processes with non-polynomial propensities using non-central conditional moment equation

Atefeh Kazeroonian, Fabian J. Theis, Jan Hasenauer

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

10 Zitate (Scopus)

Abstract

Biological processes exhibiting stochastic fluctuations are mainly modeled using the Chemical Master Equation (CME). As a direct simulation of the CME is often computationally intractable, we recently introduced the Method of Conditional Moments (MCM). The MCM is a hybrid approach to approximate the statistics of the CME solution. In this work, we provide a more comprehensive formulation of the MCM by using non-central conditional moments instead of central conditional moments. The modified formulation allows for additional insight into the model structure and for extensions to higher-order reactions and non-polynomial propensity functions. The properties of the non-central MCM are analyzed using a model for the regulation of pili formation on the surface of bacteria, which possesses rational propensity functions.

OriginalspracheEnglisch
Titel19th IFAC World Congress IFAC 2014, Proceedings
Redakteure/-innenEdward Boje, Xiaohua Xia
Herausgeber (Verlag)IFAC Secretariat
Seiten1729-1735
Seitenumfang7
ISBN (elektronisch)9783902823625
DOIs
PublikationsstatusVeröffentlicht - 2014
Veranstaltung19th IFAC World Congress on International Federation of Automatic Control, IFAC 2014 - Cape Town, Südafrika
Dauer: 24 Aug. 201429 Aug. 2014

Publikationsreihe

NameIFAC Proceedings Volumes (IFAC-PapersOnline)
Band19
ISSN (Print)1474-6670

Konferenz

Konferenz19th IFAC World Congress on International Federation of Automatic Control, IFAC 2014
Land/GebietSüdafrika
OrtCape Town
Zeitraum24/08/1429/08/14

Fingerprint

Untersuchen Sie die Forschungsthemen von „Modeling of stochastic biological processes with non-polynomial propensities using non-central conditional moment equation“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren