Model Selection in Local Approximation Gaussian Processes: A Markov Random Fields Approach

Hamed Jalali, Martin Pawelczyk, Gjergji Kasneci

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

Local approximations are popular methods to scale Gaussian processes (GPs) to big data. Local approximations reduce time complexity by dividing the original dataset into subsets and training a local expert on each subset. Aggregating the experts' prediction is done assuming either conditional dependence or independence between the experts. Imposing the conditional independence assumption (CI) between the experts renders the aggregation of different expert predictions time efficient at the cost of poor uncertainty quantification. On the other hand, modeling dependent experts can provide precise predictions and uncertainty quantification at the expense of impractically high computational costs. By eliminating weak experts via a theory-guided expert selection step, we substantially reduce the computational cost of aggregating dependent experts while ensuring calibrated uncertainty quantification. We leverage techniques from the literature on undirected graphical models, using sparse precision matrices that encode conditional dependencies between experts to select the most important experts. Moreover, our approach also provides a solution to the poor uncertainty quantification in CI-based models.

OriginalspracheEnglisch
TitelProceedings - 2021 IEEE International Conference on Big Data, Big Data 2021
Redakteure/-innenYixin Chen, Heiko Ludwig, Yicheng Tu, Usama Fayyad, Xingquan Zhu, Xiaohua Tony Hu, Suren Byna, Xiong Liu, Jianping Zhang, Shirui Pan, Vagelis Papalexakis, Jianwu Wang, Alfredo Cuzzocrea, Carlos Ordonez
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten768-778
Seitenumfang11
ISBN (elektronisch)9781665439022
DOIs
PublikationsstatusVeröffentlicht - 2021
Extern publiziertJa
Veranstaltung2021 IEEE International Conference on Big Data, Big Data 2021 - Virtual, Online, USA/Vereinigte Staaten
Dauer: 15 Dez. 202118 Dez. 2021

Publikationsreihe

NameProceedings - 2021 IEEE International Conference on Big Data, Big Data 2021

Konferenz

Konferenz2021 IEEE International Conference on Big Data, Big Data 2021
Land/GebietUSA/Vereinigte Staaten
OrtVirtual, Online
Zeitraum15/12/2118/12/21

Fingerprint

Untersuchen Sie die Forschungsthemen von „Model Selection in Local Approximation Gaussian Processes: A Markov Random Fields Approach“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren