Model Order Selection with Variational Autoencoding

Michael Baur, Franz Weiser, Benedikt Bock, Wolfgang Utschick

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

Classical methods for model order selection often fail in scenarios with low SNR or few snapshots. Deep learning-based methods are promising alternatives for such challenging situations as they compensate lack of information in the available observations with training on large datasets. This manuscript proposes an approach that uses a variational autoencoder (VAE) for model order selection. The idea is to learn a parameterized conditional covariance matrix at the VAE decoder that approximates the true signal covariance matrix. The method is unsupervised and only requires a small representative dataset for calibration after training the VAE. Numerical simulations show that the proposed method outperforms classical methods and even reaches or beats a supervised approach depending on the considered snapshots.

OriginalspracheEnglisch
Titel2023 IEEE 24th International Workshop on Signal Processing Advances in Wireless Communications, SPAWC 2023 - Proceedings
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten586-590
Seitenumfang5
ISBN (elektronisch)9781665496261
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung24th IEEE International Workshop on Signal Processing Advances in Wireless Communications, SPAWC 2023 - Shanghai, China
Dauer: 25 Sept. 202328 Sept. 2023

Publikationsreihe

NameIEEE Workshop on Signal Processing Advances in Wireless Communications, SPAWC

Konferenz

Konferenz24th IEEE International Workshop on Signal Processing Advances in Wireless Communications, SPAWC 2023
Land/GebietChina
OrtShanghai
Zeitraum25/09/2328/09/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „Model Order Selection with Variational Autoencoding“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren