Model order reduction using an adaptive basis for geometrically nonlinear structural dynamics

J. B. Rutzmoser, D. J. Rixen, P. Tiso

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

7 Zitate (Scopus)

Abstract

A new manifold projection technique for model order reduction of geometric nonlinear structures is presented in this paper. The projection basis which varies with the state of the system is the tangential space of a quadratic manifold. This manifold is generated by means of the second derivative of the nonlinear restoring force of the nonlinear system. The obtained reduced system is more compact than a comparable reduced system utilizing constant projection techniques, as the nonlinearity of the structure is considered right in the projection. However, the reduced system with less degrees of freedom is more complex than comparable linearly projected systems.

OriginalspracheEnglisch
TitelProceedings of ISMA 2014 - International Conference on Noise and Vibration Engineering and USD 2014 - International Conference on Uncertainty in Structural Dynamics
Redakteure/-innenP. Sas, D. Moens, H. Denayer
Herausgeber (Verlag)KU Leuven
Seiten2587-2596
Seitenumfang10
ISBN (elektronisch)9789073802919
PublikationsstatusVeröffentlicht - 2014
Veranstaltung26th International Conference on Noise and Vibration Engineering, ISMA 2014, Including the 5th International Conference on Uncertainty in Structural Dynamics, USD 2014 - Leuven, Belgien
Dauer: 15 Sept. 201417 Sept. 2014

Publikationsreihe

NameProceedings of ISMA 2014 - International Conference on Noise and Vibration Engineering and USD 2014 - International Conference on Uncertainty in Structural Dynamics

Konferenz

Konferenz26th International Conference on Noise and Vibration Engineering, ISMA 2014, Including the 5th International Conference on Uncertainty in Structural Dynamics, USD 2014
Land/GebietBelgien
OrtLeuven
Zeitraum15/09/1417/09/14

Fingerprint

Untersuchen Sie die Forschungsthemen von „Model order reduction using an adaptive basis for geometrically nonlinear structural dynamics“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren