Model order reduction techniques to identify submarining risk in a simplified human body model

L. Go, J. S. Jehle, M. Rees, C. Czech, S. Peldschus, F. Duddeck

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

Abstract

This work investigates linear and non-linear parametric reduced order models (ROM) capable of replacing computationally expensive high-fidelity simulations of human body models (HBM) through a non-intrusive approach. Conventional crash simulation methods pose a computational barrier that restricts profound analyses such as uncertainty quantification, sensitivity analysis, or optimization studies. The non-intrusive framework couples dimensionality reduction techniques with machine learning-based surrogate models that yield a fast responding data-driven black-box model. A comparative study is made between linear and non-linear dimensionality reduction techniques. Both techniques report speed-ups of a few orders of magnitude with an accurate generalization of the design space. These accelerations make ROMs a valuable tool for engineers.

OriginalspracheEnglisch
Seiten (von - bis)24-35
Seitenumfang12
FachzeitschriftComputer Methods in Biomechanics and Biomedical Engineering
Jahrgang27
Ausgabenummer1
DOIs
PublikationsstatusVeröffentlicht - 2024

Fingerprint

Untersuchen Sie die Forschungsthemen von „Model order reduction techniques to identify submarining risk in a simplified human body model“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren