Model-based MPI-IO tuning with Periscope tuning framework

Weifeng Liu, Michael Gerndt, Bin Gong

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

6 Zitate (Scopus)

Abstract

Summary For many parallel applications, I/O performance is a major bottleneck. MPI-IO, defined by the MPI forum, can help parallel applications overcome the performance and portability limitations of existing parallel I/O interfaces. Although autotuning has been used to improve the performance of computing kernels, MPI-IO autotuning has rarely been studied. To automate MPI-IO performance tuning, we designed and implemented an automatic tuner. The tuner relies on the Periscope tuning framework for transparently passing hints to the MPI-IO library and for automatically collecting performance data. Unlike computational code, each MPI-IO function takes a relatively long time to complete. Thus, exhaustively searching through the entire parameter space is impractical. So we developed a performance model that can direct us to shorten the tuning time.

OriginalspracheEnglisch
Seiten (von - bis)3-20
Seitenumfang18
FachzeitschriftConcurrency and Computation: Practice and Experience
Jahrgang28
Ausgabenummer1
DOIs
PublikationsstatusVeröffentlicht - 1 Jan. 2016

Fingerprint

Untersuchen Sie die Forschungsthemen von „Model-based MPI-IO tuning with Periscope tuning framework“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren