Model and Data Uncertainty for Satellite Time Series Forecasting with Deep Recurrent Models

Marc Rubwurm, Mohsin Ali, Xiao Xiang Zhu, Yarin Gal, Marco Korner

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

16 Zitate (Scopus)

Abstract

Deep Learning is often criticized as being a black-box method that provides accurate predictions, but a limited explanation of the underlying processes and no indication when to not trust those predictions. Equipping existing deep learning models with an (general) notion of uncertainty can help mitigate both these issues. The Bayesian deep learning community has developed model-agnostic methodology to estimate both data and model uncertainty that can be implemented on top of existing deep learning models. In this work, we test this methodology for deep recurrent satellite time series forecasting and test its assumptions on data and model uncertainty. We tested its effectiveness on an application on climate change where the activity of seasonal vegetation decreased over multiple years.

OriginalspracheEnglisch
Titel2020 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2020 - Proceedings
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten7025-7028
Seitenumfang4
ISBN (elektronisch)9781728163741
DOIs
PublikationsstatusVeröffentlicht - 26 Sept. 2020
Veranstaltung2020 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2020 - Virtual, Waikoloa, USA/Vereinigte Staaten
Dauer: 26 Sept. 20202 Okt. 2020

Publikationsreihe

NameInternational Geoscience and Remote Sensing Symposium (IGARSS)

Konferenz

Konferenz2020 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2020
Land/GebietUSA/Vereinigte Staaten
OrtVirtual, Waikoloa
Zeitraum26/09/202/10/20

Fingerprint

Untersuchen Sie die Forschungsthemen von „Model and Data Uncertainty for Satellite Time Series Forecasting with Deep Recurrent Models“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren