Model-Aided Federated Reinforcement Learning for Multi-UAV Trajectory Planning in IoT Networks

Jichao Chen, Omid Esrafilian, Harald Bayerlein, David Gesbert, Marco Caccamo

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

Deploying teams of unmanned aerial vehicles (UAVs) to harvest data from distributed Internet of Things (IoT) devices requires efficient trajectory planning and coordination algorithms. Multi-agent reinforcement learning (MARL) has emerged as a solution, but requires extensive and costly real-world training data. To tackle this challenge, we propose a novel model-aided federated MARL algorithm to coordinate multiple UAVs on a data harvesting mission with only limited knowledge about the environment. The proposed algorithm alternates between building an environment simulation model from real-world measurements, specifically learning the radio channel characteristics and estimating unknown IoT device positions, and federated QMIX training in the simulated environment. Each UAV agent trains a local QMIX model in its simulated environment and continuously consolidates it through federated learning with other agents, accelerating the learning process. A performance comparison with standard MARL algorithms demonstrates that our proposed model-aided FedQMIX algorithm reduces the need for real-world training experiences by around three magnitudes while attaining similar data collection performance.

OriginalspracheEnglisch
Titel2023 IEEE Globecom Workshops, GC Wkshps 2023
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten818-823
Seitenumfang6
ISBN (elektronisch)9798350370218
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung2023 IEEE Globecom Workshops, GC Wkshps 2023 - Kuala Lumpur, Malaysia
Dauer: 4 Dez. 20238 Dez. 2023

Publikationsreihe

Name2023 IEEE Globecom Workshops, GC Wkshps 2023

Konferenz

Konferenz2023 IEEE Globecom Workshops, GC Wkshps 2023
Land/GebietMalaysia
OrtKuala Lumpur
Zeitraum4/12/238/12/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „Model-Aided Federated Reinforcement Learning for Multi-UAV Trajectory Planning in IoT Networks“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren