Model-Agnostic Pricing of Exotic Derivatives Using Signatures

Andrew Alden, Carmine Ventre, Blanka Horvath, Gordon Lee

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

Neural networks hold out the promise of fast and reliable derivative pricing. Such an approach usually involves the supervised learning task of mapping contract and model parameters to derivative prices. In this work, we introduce a model-agnostic path-wise approach to derivative pricing using higher-order distribution regression. Our methodology leverages the 2nd-order Maximum Mean Discrepancy (MMD), a notion of distance between stochastic processes based on path signatures. To overcome the high computational cost of its calculation, we pre-train a neural network that can quickly and accurately compute higher-order MMDs. This allows the combination of distribution regression with neural networks in a computationally feasible way. We test our model on down-and-in barrier options. We demonstrate that our path-wise approach extends well to the high-dimensional case by applying it to rainbow options and autocallables. Our approach has a significant speed-up over Monte Carlo pricing.

OriginalspracheEnglisch
TitelProceedings of the 3rd ACM International Conference on AI in Finance, ICAIF 2022
Herausgeber (Verlag)Association for Computing Machinery, Inc
Seiten96-104
Seitenumfang9
ISBN (elektronisch)9781450393768
DOIs
PublikationsstatusVeröffentlicht - 2 Nov. 2022
Extern publiziertJa
Veranstaltung3rd ACM International Conference on AI in Finance, ICAIF 2022 - New York, USA/Vereinigte Staaten
Dauer: 2 Nov. 20224 Nov. 2022

Publikationsreihe

NameProceedings of the 3rd ACM International Conference on AI in Finance, ICAIF 2022

Konferenz

Konferenz3rd ACM International Conference on AI in Finance, ICAIF 2022
Land/GebietUSA/Vereinigte Staaten
OrtNew York
Zeitraum2/11/224/11/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „Model-Agnostic Pricing of Exotic Derivatives Using Signatures“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren