Mobile robots for learning spatio-temporal interpolation models in sensor networks - The Echo State map approach

Erik Schaffernicht, Victor Hernandez Bennetts, Achim J. Lilienthal

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

15 Zitate (Scopus)

Abstract

Sensor networks have limited capabilities to model complex phenomena occuring between sensing nodes. Mobile robots can be used to close this gap and learn local interpolation models. In this paper, we utilize Echo State Networks in order to learn the calibration and interpolation model between sensor nodes using measurements collected by a mobile robot. The use of Echo State Networks allows to deal with temporal dependencies implicitly, while the spatial mapping with a Gaussian Process estimator exploits the fact that Echo State Networks learn linear combinations of complex temporal dynamics. The resulting Echo State Map elegantly combines spatial and temporal cues into a single representation. We showcase the method in the exposure modeling task of building dust distribution maps for foundries, a challenge which is of great interest to occupational health researchers. Results from simulated data and real world experiments highlight the potential of Echo State Maps. While we focus on particulate matter measurements, the method can be applied for any other environmental variables like temperature or gas concentration.

OriginalspracheEnglisch
TitelICRA 2017 - IEEE International Conference on Robotics and Automation
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten2659-2665
Seitenumfang7
ISBN (elektronisch)9781509046331
DOIs
PublikationsstatusVeröffentlicht - 21 Juli 2017
Extern publiziertJa
Veranstaltung2017 IEEE International Conference on Robotics and Automation, ICRA 2017 - Singapore, Singapur
Dauer: 29 Mai 20173 Juni 2017

Publikationsreihe

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Konferenz

Konferenz2017 IEEE International Conference on Robotics and Automation, ICRA 2017
Land/GebietSingapur
OrtSingapore
Zeitraum29/05/173/06/17

Fingerprint

Untersuchen Sie die Forschungsthemen von „Mobile robots for learning spatio-temporal interpolation models in sensor networks - The Echo State map approach“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren