MLS2LoD3: Refining Low LoDs Building Models with MLS Point Clouds to Reconstruct Semantic LoD3 Building Models

Olaf Wysocki, Ludwig Hoegner, Uwe Stilla

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

Although highly-detailed LoD3 building models reveal great potential in various applications, they have yet to be available. The primary challenges in creating such models concern not only automatic detection and reconstruction but also standard-consistent modeling. In this paper, we introduce a novel refinement strategy enabling LoD3 reconstruction by leveraging the ubiquity of lower LoD building models and the accuracy of MLS point clouds. Such a strategy promises at-scale LoD3 reconstruction and unlocks LoD3 applications, which we also describe and illustrate in this paper. Additionally, we present guidelines for reconstructing LoD3 facade elements and their embedding into the CityGML standard model, disseminating gained knowledge to academics and professionals. We believe that our method can foster development of LoD3 reconstruction algorithms and subsequently enable their wider adoption.

OriginalspracheEnglisch
TitelRecent Advances in 3D Geoinformation Science - Proceedings of the 18th 3D GeoInfo Conference
Redakteure/-innenThomas H. Kolbe, Andreas Donaubauer, Christof Beil
Herausgeber (Verlag)Springer Science and Business Media Deutschland GmbH
Seiten367-380
Seitenumfang14
ISBN (Print)9783031436987
DOIs
PublikationsstatusVeröffentlicht - 2024
VeranstaltungInternational 3D GeoInfo Conference, 3DGeoInfo 2023 - Munich, Deutschland
Dauer: 12 Sept. 202314 Sept. 2023

Publikationsreihe

NameLecture Notes in Geoinformation and Cartography
ISSN (Print)1863-2246
ISSN (elektronisch)1863-2351

Konferenz

KonferenzInternational 3D GeoInfo Conference, 3DGeoInfo 2023
Land/GebietDeutschland
OrtMunich
Zeitraum12/09/2314/09/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „MLS2LoD3: Refining Low LoDs Building Models with MLS Point Clouds to Reconstruct Semantic LoD3 Building Models“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren