MLearn: A declarative machine learning language for database systems

Maximilian E. Schüle, Matthias Bungeroth, Alfons Kemper, Stephan Günnemann, Thomas Neumann

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

6 Zitate (Scopus)

Abstract

This paper outlines the requirements of our ML2SQL compiler that allows a dedicated machine learning language (MLearn) to be run on different target architectures. The language was designed to cover an end-to-end machine learning process, including initial data curation, with the focus on moving computations inside the core of database systems. To move computations to the data, we explain the architecture of a compiler that translates into target specific user-defined-functions for the PostgreSQL and HyPer database systems. For computations inside user-defined-functions, we explain the necessary tensor datatypes and the corresponding functions. We base the explanations on an accompanying example of linear regression. To face the challenges to database systems arising from array-like data, we propose such solutions as integrating ArrayQL as stored procedures to unify the relational and array perspectives.

OriginalspracheEnglisch
TitelProceedings of the 3rd Workshop on Data Management for End-To-End Machine Learning, DEEM 2019 - In conjunction with the 2019 ACM SIGMOD/PODS Conference
Herausgeber (Verlag)Association for Computing Machinery
ISBN (elektronisch)9781450367974
DOIs
PublikationsstatusVeröffentlicht - 30 Juni 2019
Veranstaltung3rd Workshop on Data Management for End-To-End Machine Learning, DEEM 2019 - In conjunction with the 2019 ACM SIGMOD/PODS Conference - Amsterdam, Niederlande
Dauer: 30 Juni 2019 → …

Publikationsreihe

NameProceedings of the ACM SIGMOD International Conference on Management of Data
ISSN (Print)0730-8078

Konferenz

Konferenz3rd Workshop on Data Management for End-To-End Machine Learning, DEEM 2019 - In conjunction with the 2019 ACM SIGMOD/PODS Conference
Land/GebietNiederlande
OrtAmsterdam
Zeitraum30/06/19 → …

Fingerprint

Untersuchen Sie die Forschungsthemen von „MLearn: A declarative machine learning language for database systems“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren