Minimum-cost integer circulations in given homology classes

Sarah Morell, Ina Seidel, Stefan Weltge

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

2 Zitate (Scopus)

Abstract

Let D be a directed graph cellularly embedded in a surface together with non-negative cost on its arcs. Given any integer circulation in D, we study the problem of finding a minimum-cost non-negative integer circulation in D that is homologous over the integers to the given circulation. A special case of this problem arises in recent work on the stable set problem for graphs with bounded odd cycle packing number, in which the surface is non-orientable (Conforti et al., SODA'20). For orientable surfaces, polynomial-time algorithms have been obtained for different variants of this problem. We complement these results by showing that the convex hull of feasible solutions has a very simple polyhedral description. In contrast, only little seems to be known about the case of non-orientable surfaces. We show that the problem is strongly NP-hard for general non-orientable surfaces, and give the first polynomial-time algorithm for surfaces of fixed genus. For the latter, we provide a characterization of Z-homology that allows us to recast the problem as a special integer program, which can be efficiently solved using proximity results and dynamic programming.

OriginalspracheEnglisch
TitelACM-SIAM Symposium on Discrete Algorithms, SODA 2021
Redakteure/-innenDaniel Marx
Herausgeber (Verlag)Association for Computing Machinery
Seiten2725-2738
Seitenumfang14
ISBN (elektronisch)9781611976465
PublikationsstatusVeröffentlicht - 2021
Veranstaltung32nd Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2021 - Alexandria, Virtual, USA/Vereinigte Staaten
Dauer: 10 Jan. 202113 Jan. 2021

Publikationsreihe

NameProceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms

Konferenz

Konferenz32nd Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2021
Land/GebietUSA/Vereinigte Staaten
OrtAlexandria, Virtual
Zeitraum10/01/2113/01/21

Fingerprint

Untersuchen Sie die Forschungsthemen von „Minimum-cost integer circulations in given homology classes“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren