TY - JOUR
T1 - Minimizing spurious switching activities in CMOS circuits
AU - Wróblewski, Artur
AU - Auernhammer, Florian
AU - Nossek, Josef A.
PY - 2002
Y1 - 2002
N2 - In combinatorial blocks of static CMOS circuits transistor sizing can be applied for delay balancing in order to guarantee synchronously arriving signal slopes at the input of logic gates. Since the delay of a logic gate depends directly on transistor sizes, the variation of channel-widths and -lengths (W and L) allows to equalize different path delays without influencing the total propagation delay of the circuit. Unfortunately not only the delay, but also the total capacitance and the short-circuit power consumption of a circuit depend on the transistor sizes. In order to take this fact into account, the method is formulated as a multiobjective optimization problem, where the path delay differences and the power consumption are the design objectives. To achieve optimal results, transistor lengths have to be increased, which results in both increased gate capacitances and area. Splitting the long transistors counteracts this negative influence and reduces the power dissipated. Moreover, the so called “Zero-Delay” paths can be avoided by introducing additional delays.
AB - In combinatorial blocks of static CMOS circuits transistor sizing can be applied for delay balancing in order to guarantee synchronously arriving signal slopes at the input of logic gates. Since the delay of a logic gate depends directly on transistor sizes, the variation of channel-widths and -lengths (W and L) allows to equalize different path delays without influencing the total propagation delay of the circuit. Unfortunately not only the delay, but also the total capacitance and the short-circuit power consumption of a circuit depend on the transistor sizes. In order to take this fact into account, the method is formulated as a multiobjective optimization problem, where the path delay differences and the power consumption are the design objectives. To achieve optimal results, transistor lengths have to be increased, which results in both increased gate capacitances and area. Splitting the long transistors counteracts this negative influence and reduces the power dissipated. Moreover, the so called “Zero-Delay” paths can be avoided by introducing additional delays.
UR - http://www.scopus.com/inward/record.url?scp=84943263348&partnerID=8YFLogxK
U2 - 10.1007/3-540-45716-x_42
DO - 10.1007/3-540-45716-x_42
M3 - Article
AN - SCOPUS:84943263348
SN - 0302-9743
VL - 2451
SP - 419
EP - 428
JO - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
JF - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ER -