Metrics for self-adaptive queuing in middleware for internet of things

Peeranut Chindanonda, Vladimir Podolskiy, Michael Gerndt

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

3 Zitate (Scopus)

Abstract

Internet of Things (IoT) is a cornerstone technology for automation in the physical world. In particular, IoT allows industrial automation, also known as Industry 4.0. With overwhelming amount of sensor types and communication protocols, management of IoT middleware becomes unfeasible. This problem might be addressed by implementing self-adaptive functionality in IoT middleware. The presented paper contributes to the studies of the self-adaptive message queuing in IoT middleware: an estimated waiting time (EWT) metric for automating the scaling of message queuing subsystems is proposed and evaluated on CPU-intensive and blocking I/O-intensive tasks. Mixed metrics (with conventional CPU utilization and processing capacity) were also evaluated. Evaluation of the proposed metrics based on Google Kubernetes Engine revealed cost reduction potential of EWT and the well-balanced quality of queuing IoT middleware deployments provided by processing capacity metric.

OriginalspracheEnglisch
TitelProceedings - 2019 IEEE 4th International Workshops on Foundations and Applications of Self* Systems, FAS*W 2019
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten130-133
Seitenumfang4
ISBN (elektronisch)9781728124063
DOIs
PublikationsstatusVeröffentlicht - Juni 2019
Veranstaltung4th IEEE International Workshops on Foundations and Applications of Self* Systems, FAS*W 2019 - Umea, Schweden
Dauer: 16 Juni 201920 Juni 2019

Publikationsreihe

NameProceedings - 2019 IEEE 4th International Workshops on Foundations and Applications of Self* Systems, FAS*W 2019

Konferenz

Konferenz4th IEEE International Workshops on Foundations and Applications of Self* Systems, FAS*W 2019
Land/GebietSchweden
OrtUmea
Zeitraum16/06/1920/06/19

Fingerprint

Untersuchen Sie die Forschungsthemen von „Metrics for self-adaptive queuing in middleware for internet of things“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren