Memory capacity of adaptive flow networks

Komal Bhattacharyya, David Zwicker, Karen Alim

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

Abstract

Biological flow networks adapt their network morphology to optimize flow while being exposed to external stimuli from different spatial locations in their environment. These adaptive flow networks retain a memory of the stimulus location in the network morphology. Yet, what limits this memory and how many stimuli can be stored are unknown. Here, we study a numerical model of adaptive flow networks by applying multiple stimuli subsequently. We find strong memory signals for stimuli imprinted for a long time into young networks. Consequently, networks can store many stimuli for intermediate stimulus duration, which balance imprinting and aging.

OriginalspracheEnglisch
Aufsatznummer034407
FachzeitschriftPhysical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
Jahrgang107
Ausgabenummer3
DOIs
PublikationsstatusVeröffentlicht - März 2023

Fingerprint

Untersuchen Sie die Forschungsthemen von „Memory capacity of adaptive flow networks“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren