Medical-based Deep Curriculum Learning for Improved Fracture Classification

Amelia Jiménez-Sánchez, Diana Mateus, Sonja Kirchhoff, Chlodwig Kirchhoff, Peter Biberthaler, Nassir Navab, Miguel A. González Ballester, Gemma Piella

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

28 Zitate (Scopus)

Abstract

Current deep-learning based methods do not easily integrate to clinical protocols, neither take full advantage of medical knowledge. In this work, we propose and compare several strategies relying on curriculum learning, to support the classification of proximal femur fracture from X-ray images, a challenging problem as reflected by existing intra- and inter-expert disagreement. Our strategies are derived from knowledge such as medical decision trees and inconsistencies in the annotations of multiple experts, which allows us to assign a degree of difficulty to each training sample. We demonstrate that if we start learning “easy” examples and move towards “hard”, the model can reach a better performance, even with fewer data. The evaluation is performed on the classification of a clinical dataset of about 1000 X-ray images. Our results show that, compared to class-uniform and random strategies, the proposed medical knowledge-based curriculum, performs up to 15% better in terms of accuracy, achieving the performance of experienced trauma surgeons.

OriginalspracheEnglisch
TitelMedical Image Computing and Computer Assisted Intervention – MICCAI 2019 - 22nd International Conference, Proceedings
Redakteure/-innenDinggang Shen, Pew-Thian Yap, Tianming Liu, Terry M. Peters, Ali Khan, Lawrence H. Staib, Caroline Essert, Sean Zhou
Herausgeber (Verlag)Springer Science and Business Media Deutschland GmbH
Seiten694-702
Seitenumfang9
ISBN (Print)9783030322250
DOIs
PublikationsstatusVeröffentlicht - 2019
Veranstaltung22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019 - Shenzhen, China
Dauer: 13 Okt. 201917 Okt. 2019

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band11769 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019
Land/GebietChina
OrtShenzhen
Zeitraum13/10/1917/10/19

Fingerprint

Untersuchen Sie die Forschungsthemen von „Medical-based Deep Curriculum Learning for Improved Fracture Classification“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren