Maximum semidefinite and linear extension complexity of families of polytopes

Gennadiy Averkov, Volker Kaibel, Stefan Weltge

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

6 Zitate (Scopus)

Abstract

We relate the maximum semidefinite and linear extension complexity of a family of polytopes to the cardinality of this family and the minimum pairwise Hausdorff distance of its members. This result directly implies a known lower bound on the maximum semidefinite extension complexity of 0/1-polytopes. We further show how our result can be used to improve on the corresponding bounds known for polygons with integer vertices. Our geometric proof builds upon nothing else than a simple well-known property of maximum volume inscribed ellipsoids of convex bodies. In particular, it does not rely on factorizations over the semidefinite cone and thus avoids involved procedures of balancing them as required, e.g., in Briët et al. (Math Program 153(1):179–199, 2015). Moreover, we show that the linear extension complexity of every d-dimensional 0/1-polytope is bounded from above by O(2dd).

OriginalspracheEnglisch
Seiten (von - bis)381-394
Seitenumfang14
FachzeitschriftMathematical Programming
Jahrgang167
Ausgabenummer2
DOIs
PublikationsstatusVeröffentlicht - 1 Feb. 2018
Extern publiziertJa

Fingerprint

Untersuchen Sie die Forschungsthemen von „Maximum semidefinite and linear extension complexity of families of polytopes“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren