Maximum Power Point Tracking Based Model Predictive Control and Extended Kalman Filter Using Single Voltage Sensor for PV Systems

Mostafa Ahmed, Mohamed Abdelrahem, Ralph Kennel, Christoph M. Hackl

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

10 Zitate (Scopus)

Abstract

The variability of photovoltaic (PV) energy because of atmospheric conditions dependency necessitates employing a maximum power point tracking (MPPT) technique in the installed PV systems. So in this paper, finite control set model predictive control (FCS-MPC) is used to extract the maximum power from the PV source using a boost converter as interfacing circuit. The proposed technique combines FCS-MPC with an extended Kalman filter (EKF) to reduce the number of required sensors. The EKF is used to estimate both of the PV current and the capacitor voltage. This eliminates two sensors circuits from the PV system, which decreases the system cost. The proposed technique is validated by simulation results under different operating conditions.

OriginalspracheEnglisch
Titel2020 IEEE 29th International Symposium on Industrial Electronics, ISIE 2020 - Proceedings
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten1039-1044
Seitenumfang6
ISBN (elektronisch)9781728156354
DOIs
PublikationsstatusVeröffentlicht - Juni 2020
Veranstaltung29th IEEE International Symposium on Industrial Electronics, ISIE 2020 - Delft, Niederlande
Dauer: 17 Juni 202019 Juni 2020

Publikationsreihe

NameIEEE International Symposium on Industrial Electronics
Band2020-June

Konferenz

Konferenz29th IEEE International Symposium on Industrial Electronics, ISIE 2020
Land/GebietNiederlande
OrtDelft
Zeitraum17/06/2019/06/20

Fingerprint

Untersuchen Sie die Forschungsthemen von „Maximum Power Point Tracking Based Model Predictive Control and Extended Kalman Filter Using Single Voltage Sensor for PV Systems“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren