MatchU: Matching Unseen Objects for 6D Pose Estimation from RGB-D Images

Junwen Huang, Hao Yu, Kuan Ting Yu, Nassir Navab, Slobodan Ilic, Benjamin Busam

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

Recent learning methods for object pose estimation require resource-intensive training for each individual object instance or category, hampering their scalability in real applications when confronted with previously unseen objects. In this paper, we propose MatchU, a Fuse-Describe-Match strategy for 6D pose estimation from RGB-D images. MatchU is a generic approach that fuses 2D texture and 3D geometric cues for 6D pose prediction of unseen objects. We rely on learning geometric 3D descriptors that are rotation-invariant by design. By encoding pose-agnostic geometry, the learned descriptors naturally generalize to unseen objects and capture symmetries. To tackle ambiguous associations using 3D geometry only, we fuse additional RGB information into our descriptor. This is achieved through a novel attention-based mechanism that fuses cross-modal information, together with a matching loss that leverages the latent space learned from RGB data to guide the descriptor learning process. Extensive experiments reveal the generalizability of both the RGB-D fusion strategy as well as the descriptor efficacy. Benefiting from the novel designs, MatchU surpasses all existing methods by a significant margin in terms of both accuracy and speed, even without the requirement of expensive re-training or rendering.

OriginalspracheEnglisch
TitelProceedings - 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024
Herausgeber (Verlag)IEEE Computer Society
Seiten10095-10105
Seitenumfang11
ISBN (elektronisch)9798350353006
DOIs
PublikationsstatusVeröffentlicht - 2024
Veranstaltung2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024 - Seattle, USA/Vereinigte Staaten
Dauer: 16 Juni 202422 Juni 2024

Publikationsreihe

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (Print)1063-6919

Konferenz

Konferenz2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024
Land/GebietUSA/Vereinigte Staaten
OrtSeattle
Zeitraum16/06/2422/06/24

Fingerprint

Untersuchen Sie die Forschungsthemen von „MatchU: Matching Unseen Objects for 6D Pose Estimation from RGB-D Images“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren