Making kernel density estimation robust towards missing values in highly incomplete multivariate data without imputation

Richard Leibrandt, Stephan Günnemann

Publikation: KonferenzbeitragPapierBegutachtung

6 Zitate (Scopus)

Abstract

Density estimation is one of the most frequently used data analytics techniques. A major challenge of real-world datasets is missing values, originating e.g. from sampling errors or data loss. The recovery of these is often impossible or too expensive. Missing values are not necessarily limited to a few features or samples, rendering methods based on complete auxiliary variables unsuitable. In this paper we introduce three models able to deal with such datasets. They are based on the new concept of virtual objects. Additionally, we present a computationally efficient approximation. Generalizing KDE, our methods are called Warp-KDE. Experiments with incomplete datasets show that Warp-KDE methods are superior to established imputation methods.

OriginalspracheEnglisch
Seiten747-755
Seitenumfang9
DOIs
PublikationsstatusVeröffentlicht - 2018
Veranstaltung2018 SIAM International Conference on Data Mining, SDM 2018 - San Diego, USA/Vereinigte Staaten
Dauer: 3 Mai 20185 Mai 2018

Konferenz

Konferenz2018 SIAM International Conference on Data Mining, SDM 2018
Land/GebietUSA/Vereinigte Staaten
OrtSan Diego
Zeitraum3/05/185/05/18

Fingerprint

Untersuchen Sie die Forschungsthemen von „Making kernel density estimation robust towards missing values in highly incomplete multivariate data without imputation“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren