Majority graphs of assignment problems and properties of popular random assignments

Felix Brandt, Johannes Hofbauer, Martin Suderland

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

8 Zitate (Scopus)

Abstract

Randomized mechanisms for assigning objects to individual agents have received increasing attention by computer scientists as well as economists. In this paper, we study a property of random assignments, called popularity, which corresponds to the well-known notion of Condorcet-consistency in social choice theory. Our contribution is threefold. First, we define a simple condition that characterizes whether two assignment problems induce the same majority graph and which can be checked in polynomial time. Secondly, we analytically and experimentally investigate the uniqueness of popular random assignments. Finally, we prove that popularity is incompatible with very weak notions of both strat- egyproofness and cnvy-freeness. This settles two open problems by Aziz et al. [3] and reveals an interesting tradeoff between social and individual goals in random assignment.

OriginalspracheEnglisch
Titel16th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2017
Redakteure/-innenEdmund Durfee, Sanmay Das, Kate Larson, Michael Winikoff
Herausgeber (Verlag)International Foundation for Autonomous Agents and Multiagent Systems (IFAAMAS)
Seiten335-343
Seitenumfang9
ISBN (elektronisch)9781510855076
PublikationsstatusVeröffentlicht - 2017
Veranstaltung16th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2017 - Sao Paulo, Brasilien
Dauer: 8 Mai 201712 Mai 2017

Publikationsreihe

NameProceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS
Band1
ISSN (Print)1548-8403
ISSN (elektronisch)1558-2914

Konferenz

Konferenz16th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2017
Land/GebietBrasilien
OrtSao Paulo
Zeitraum8/05/1712/05/17

Fingerprint

Untersuchen Sie die Forschungsthemen von „Majority graphs of assignment problems and properties of popular random assignments“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren