Magnetic damping in poly-crystalline Co25Fe75: Ferromagnetic resonance vs. spin wave propagation experiments

H. S. Körner, M. A.W. Schoen, T. Mayer, M. M. Decker, J. Stigloher, T. Weindler, T. N.G. Meier, M. Kronseder, C. H. Back

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

15 Zitate (Scopus)

Abstract

We report on the investigation of the magnetic damping of a 10 nm thin, poly-crystalline Co25Fe75 film grown by molecular beam epitaxy. Ferromagnetic resonance (FMR) measurements reveal a low intrinsic magnetic damping αintFMR=(1.5±0.1)×10-3. In contrast, in patterned micrometer wide stripes, spin wave (SW) propagation experiments performed by time resolved scanning magneto-optical Kerr microscopy yield attenuation lengths on the order of 5-8 μm. From this quantity, we deduce an effective magnetic SW damping αeffSW, exp =(3.9±0.3)×10-3. For the system studied, this significant difference between both damping parameters is attributed to the non-negligible extrinsic contributions (local inhomogeneities and two-magnon scattering) to the magnetic losses which manifest themselves as a distinct inhomogeneous FMR linewidth broadening. This explanation is supported by micromagnetic simulations. Our findings prove that poly-crystalline Co25Fe75 represents a promising binary 3d transition metal alloy to be employed in magnonic devices with much longer SW attenuation lengths compared to other metallic systems.

OriginalspracheEnglisch
Aufsatznummer132406
FachzeitschriftApplied Physics Letters
Jahrgang111
Ausgabenummer13
DOIs
PublikationsstatusVeröffentlicht - 25 Sept. 2017
Extern publiziertJa

Fingerprint

Untersuchen Sie die Forschungsthemen von „Magnetic damping in poly-crystalline Co25Fe75: Ferromagnetic resonance vs. spin wave propagation experiments“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren